hichipper Documentation
Release 0.6.0

Caleb Lareau

Jul 11, 2022

Contents

1 About
2 Installation
2.1 Install stable versionthrough PyPi o
22 Install viaGitHub oo e e
3 Dependencies
3.1 Required software for hichipper e e
4 Usage
4.1 Simpleusage example e e e e
4.2 More typical example e e e e e e e e e e e e e e e

5 Version control
5.1 Noteworthy changes in hichipper e

6 Configuration
6.1 hichipper parameters e e e e e e e e

7 Data inputs
7.1 Inputs for hichipper e e

8 Peaks
8.1 Peakswithhichipper e
8.2 Multiple ChIP-Seq peaks asinput o e e
8.3 HiChIP-Specific Bias Correction o o v v ittt et e e e

9 Output
0.1 Output e

10 Differential
10.1 Finding differential loops oL L e e e e e

11 Visualization
11.1 Visualizing loops L e e e e

12 Author

13
13

15
15

19
19

21
21
22
22

23
23

25
25

27
27

29

13 Citation

14 Bugs / Errors

31

33

hichipper Documentation, Release 0.6.0

Contents 1

https://badge.fury.io/py/hichipper
https://travis-ci.org/aryeelab/hichipper
https://opensource.org/licenses/MIT
https://www.biorxiv.org/content/early/2017/09/21/192302

hichipper Documentation, Release 0.6.0

2 Contents

CHAPTER 1

About

hichipper is an open-source command-line toolkit that performs restriction fragment bias-aware preprocessing of
HiChIP data. This package takes output from a HiC-Pro run and a sample manifest file (. yaml) that coordinates
optional high-quality peaks (identified through ChIP-Seq) and restriction fragment locations as input and produces
output that can be used to 1) determine library quality, 2) identify and characterize DNA loops and 3) interactively
visualize loops. Loops are assigned strength and confidence metrics that can be used to evaluate samples individually
or for differential analysis in downstream tools.

—

Restriction .rds Visualization

il ‘,},_,Y_('_/_‘wff:@ﬁ 51

Restriction Motif
Aware Modeling

Available Online
—
yaml A E> .bedpe Loops

configuration i .
WA AV
HiChIP —
Aligned Hi-C Background Loop / Anchor A

Output Correction Inference

Quality
Control

.html

vy hichipper

— via HiCPro

https://www.nature.com/nmeth/journal/v13/n11/full/nmeth.3999.html
https://github.com/nservant/HiC-Pro

hichipper Documentation, Release 0.6.0

4 Chapter 1. About

CHAPTER 2

Installation

2.1 Install stable version through PyPi

There are a few dependencies needed to get hichipper to run. All are very common bioinformatics tools / languages
and should be readily available in most systems. However, note that the current implementation of hichipper is
not supported on Windows platforms.

Depending on your python environment, we generally recommend using a virtual environment to keep python de-
pendencies tidy. An example of installing hichipper inside a new python virtual environment called venv using the
following sequence of commands—

virtualenv -p /usr/bin/python2.7 venv
source venv/bin/activate

pip install hichipper

hichipper --version

2.2 Install via GitHub

Though not recommended, a bleeding-edge (development) version can be installed directly from Git. Again using a
virtual environment—

virtualenv -p /usr/bin/python2.7 venv
source venv/bin/active
pip3 install git+ssh://git@github.com/aryeelab/search/tree/master/hichipper

While installing hichipper is obviously a great first step, make sure that all of the dependencies are met. Check out
the next page for more detail.

http://hichipper.readthedocs.io/en/latest/content/Dependencies.html
http://hichipper.readthedocs.io/en/latest/content/Dependencies.html

hichipper Documentation, Release 0.6.0

6 Chapter 2. Installation

CHAPTER 3

Dependencies

3.1 Required software for hichipper

The following dependencies need to be installed before running hichipper: bedtools, OpenSSL, libcurl, libxml2, and
samtools. Depending on if you want some bonus functionality, you may need to download additional requirements.

Except for bedtools, these other dependencies came out of the box with the unix/linux systems that we’ve used
hichipper on.

But just to be safe, on an Ubuntu system, all of the dependencies can be installed with:

apt-get install bedtools libssl-dev libcurl4-openssl-dev libxml2-dev

Additionally, R must be available in the environment as well as a reasonably recent version of pandoc and a few
packages that can be downloaded running the following in an ‘R’ environment. :

install_pkgs <- function (pkg) {

new.pkg <- pkg[! (pkg %in% installed.packages () [, "Package"])]

if (length(new.pkg)) install.packages (new.pkg, dependencies = TRUE, repos="https:/
<»/cloud.r-project.org")
}
install_pkgs(c("data.table", "devtools", "foreach", "ggplot2", "knitr", "networkD3",
—"readr", "reshape2"))

source ("https://bioconductor.org/biocLite.R")
install_pkgs_bioc <- function (pkg) {
new.pkg <- pkg[! (pkg %in% installed.packages () [, "Package"])]
if (length(new.pkg)) biocLite (new.pkg, dependencies = TRUE, repos="https://cloud.
—r-project.org")
}
install_pkgs_bioc(c("diffloop"))

or simply download this R script and run:

http://bedtools.readthedocs.io/en/latest/content/installation.html
http://www.htslib.org/download/
http://pandoc.org
https://github.com/aryeelab/hichipper/blob/master/hichipper/requirementsInstall.R

hichipper Documentation, Release 0.6.0

Rscript requirementsInstall.R

Convenient pandoc binaries for Linux, Mac and Windows are available for download from RStudio. If you prefer to
install pandoc globally on your machine, installation instructions can be found here.

8 Chapter 3. Dependencies

https://s3.amazonaws.com/rstudio-buildtools/pandoc-1.12.4.2.zip
http://pandoc.org/installing.html

CHAPTER 4

Usage

4.1 Simple usage example

The example below uses the test dataset bundled with the hichipper package source code. Download the package,
change to the test directory, and execute the basic working example with:

git clone https://github.com/aryeelab/hichipper.git
cd hichipper/tests
hichipper —-out outputl yaml/one.yaml

Here’s a more detailed description of what just happened. First, we had to create a sample description file that specifies
how peaks are to be inferred (in this example, they are pre-specified from a ChIP-Seq experiment). Next, one must
specify the location of a restriction fragment file. Finally, a path to the HiC-Pro output folder must be designated.
These are encoded through the peaks, resfrags, and hicpro_output variables that will be parsed from the
.yaml format.

1. Create a sample description file:
Description files can be created with the . yaml format.
Processing . yaml format

Example yaml format sample description file:

peaks:

- chipseq/GM12878_SMC3_ChIPSeq_chr22.narrowPeak
resfrags:

- resfrag/hgl9_Mbol_resfrag _chr22.bed.gz
hicpro_output:

— hicpro

Note: This file is available as example.yaml in the hichipper/tests directory.

In this example, we call loops from two GM 12878 samples using just chromosome 22 using pre-determined peaks
from a ChIP-Seq file.

https://en.wikipedia.org/wiki/YAML

hichipper Documentation, Release 0.6.0

1. Run the pipeline:

’hichipper -—out outputl yaml/one.yaml

Additional details concerning user configuration options are shown below.

4.2 More typical example

While the example above references files that are part of the hichipper distribution, our experience using this tool in
conjunction with HiC-Pro suggests that a file hierarchy like the following may be more typical.

’ls -LR

yields (a slightly modified version of)

./hicpro/bowtie_results:
bwt2 bwt2_global bwt2_local

./hicpro/bowtie_results/bwt2:
SRR3467175 SRR3467176 SRR3467177 SRR3467178

./hicpro/bowtie_results/bwt2/SRR3467175:

SRR3467175_1_hgl9.bwt2merged.bam SRR3467175_2_hgl9.bwt2merged.bam SRR3467175_hgl9.
—bwt2pairs.bam

SRR3467175_1_hgl9.mapstat SRR3467175_2_hgl9.mapstat SRR3467175_hgl9.
—bwt2pairs.pairstatx*

./hicpro/bowtie_results/bwt2/SRR3467176:

SRR3467176_1_hgl9.bwt2merged.bam SRR3467176_2_hgl9.bwt2merged.bam SRR3467176_hgl9.
—bwt2pairs.bam

SRR3467176_1_hgl9.mapstat SRR3467176_2_hgl9.mapstat SRR3467176_hgl9.
—bwt2pairs.pairstatx*

./hicpro/bowtie_results/bwt2/SRR3467177:

SRR3467177_1_hgl9.bwt2merged.bam SRR3467177_2_hgl9.bwt2merged.bam SRR3467177_hgl9.
—bwt2pairs.bam

SRR3467177_1_hgl9.mapstat SRR3467177_2_hgl9.mapstat SRR3467177_hgl9.
—bwt2pairs.pairstatx*

./hicpro/bowtie_results/bwt2/SRR3467178:

SRR3467178_1_hgl9.bwt2merged.bam SRR3467178_2_hgl9.bwt2merged.bam SRR3467178_hgl9.
—bwt2pairs.bam

SRR3467178_1_hgl9.mapstat SRR3467178_2_hgl9.mapstat SRR3467178_hgl9.
—bwt2pairs.pairstatx*

./hicpro/hic_results:
data

./hicpro/hic_results/data:
SRR3467175 SRR3467176 SRR3467177 SRR3467178

./hicpro/hic_results/data/SRR3467175:

SRR3467175_hgl9.bwt2pairs.DEPairsx* SRR3467175_hgl9.bwt2pairs.RSstatx* SRR3467175_
—~hgl9.bwt2pairs.SinglePairsx*

SRR3467175_hgl9.bwt2pairs.DumpPairs* SRR3467175_hgl9.bwt2pairs.SCPairs* SRR3467175_
—hgl9.bwt2pairs.validPairs~«

(continues on next page)

10 Chapter 4. Usage

hichipper Documentation, Release 0.6.0

(continued from previous page)

SRR3467175.allvalidPairs~

./hicpro/hic_results/data/SRR3467176:

SRR3467176_hgl9.bwt2pairs.DEPairsx* SRR3467176_hgl9.bwt2pairs.RSstat« SRR3467176_
—~hgl9.bwt2pairs.SinglePairsx*

SRR3467176_hgl9.bwt2pairs.DumpPairs* SRR3467176_hgl9.bwt2pairs.SCPairs+ SRR3467176_
—hgl9.bwt2pairs.validPairs~«

SRR3467176.allValidPairsx*

./hicpro/hic_results/data/SRR3467177:

SRR3467177_hgl9.bwt2pairs.DEPairsx* SRR3467177_hgl9.bwt2pairs.RSstat« SRR3467177_
—~hgl9.bwt2pairs.SinglePairsx*

SRR3467177_hgl9.bwt2pairs.DumpPairs* SRR3467177_hgl9.bwt2pairs.SCPairsx SRR3467177_
—~hgl9.bwt2pairs.validPairs~

SRR3467177.allVvalidPairs«*

./hicpro/hic_results/data/SRR3467178:

SRR3467178_hgl9.bwt2pairs.DEPairsx* SRR3467178_hgl9.bwt2pairs.RSstatx* SRR3467178_
—hgl9.bwt2pairs.SinglePairsx*

SRR3467178_hgl9.bwt2pairs.DumpPairs* SRR3467178_hgl9.bwt2pairs.SCPairs* SRR3467178_
—hgl9.bwt2pairs.validPairs~*

SRR3467178.allValidPairsx*

where files denoted in with an asterisk* are assumed to exist. Typically, an analysis folder may look like so:

fastqg/
| -— SRR3467175
| |-— SRR3467175_1.fastqg.gz
| |-— SRR3467175_2.fastqg.gz
| -— SRR3467176
| |-— SRR3467176_1.fastqg.gz
| |-— SRR3467176_2.fastqg.gz
| -—— SRR3467177
| |-— SRR3467177_1.fastqg.gz
| |-— SRR3467177_2.fastqg.gz
| -— SRR3467178
| |-— SRR3467178_1.fastqg.gz
| |-— SRR3467178_2.fastqg.gz
hicpro/
| -— HiCPro_stepl_hic.sh
| -— bowtie_results/
\ |- bwt2/
|-— SRR3467175
| |-— SRR3467175_hgl9.bwt2pairs.pairstat
|-— SRR3467176
| |-— SRR3467176_hgl9.bwt2pairs.pairstat
| -—— SRR3467177
| |-— SRR3467177_hgl9.bwt2pairs.pairstat
|-— SRR3467178
| |-— SRR3467178_hgl9.bwt2pairs.pairstat
—— hic_results/
|-— data/
| | -— SRR3467175
\ \ |-— SRR3467175+RSstat
| | |-— SRR3467175%«Pairs # 5 Files

(continues on next page)

4.2. More typical example 11

hichipper Documentation, Release 0.6.0

(continued from previous page)

| | | |-— SRR3467175.allvalidPairs

\ \ | -— SRR3467176

\ \ \ |-— SRR3467176+RSstat
\ \ \ |-— SRR3467176+Pairs # 5 Files
\ \ \ |-— SRR3467175.allvalidPairs
\ \ | -— SRR3467177

\ \ \ |-— SRR3467177+«RSstat
\ \ \ |-— SRR3467177+Pairs # 5 Files
\ \ \ |-— SRR3467175.allvValidPairs

\ \ |-— SRR3467178

\ \ \ | -— SRR3467178+RSstat

| | | | -— SRR3467178+Pairs # 5 Files
| | | |-— SRR3467175.allvalidPairs
GM12878_SMC3_ChIPSeqg.narrowPeak
hgl9_MboI_resfrag.bed.gz

yaml/

| -— one.yaml
config-hicpro-mboi-extl2.txt

where the results in the hicpro directory could have been obtained by running:

HiC-Pro -i fastg/ -o hicpro/ -c config-hicpro-mboi-extl2.txt -p

and subsequently executing the resulting HiCPro_stepl_hic.shand HiCPro_step2_hic.sh.

Thus, the yaml/one . yaml file needed for hichipper when executed from the current working directory would look
like this:

peaks:

— GM12878_SMC3_ChIPSeqg.narrowPeak
resfrags:

- hgl9_MboI_resfrag.bed.gz
hicpro_output:

- hicpro

And could be executed running this command:

hichipper —--out GM12878 config.yaml

would yield the default output from hichipper.

12 Chapter 4. Usage

CHAPTER B

Version control

5.1 Noteworthy changes in hichipper

5.1.1 Split .fastq files as input to HiC-Pro

As of version 0. 5. 3 of hichipper, users should be able to input split . fast g files into HiC-Pro and have hichipper
function properly. No extra user flags are needed for this functionality. Thanks to our early users for helping us figure
this out.

5.1.2 A note on duplicate PETs in loops
In certain versions (0.4 .4 to 0. 5. 3) of hichipper, duplicates were not being filtered out by default. These duplicates
were potentially inflating the number of PETs mapping to loops only.

In version 0. 7.1, peaks are now called using all reads without again filtering duplicates as this is done during the
HiC-Pro step.

13

hichipper Documentation, Release 0.6.0

14 Chapter 5. Version control

CHAPTER O

Configuration

6.1 hichipper parameters

Running

’hichipper ——help

shows the parameters that can be used in this software package as reproduced below.

Options:
—-—out TEXT

—existing directory [Required]
--min-dist TEXT
—-—-max—-dist TEXT

--macs2-string TEXT

—--macs2-genome TEXT

—-—peak-pad TEXT
—-—merge—gap TEXT

——keep-temp-files
—-skip-background-correction

--skip-resfrag-pad
--skip-qgc

Usage: hichipper [OPTIONS] MANIFEST

A preprocessing and QC pipeline for HiChIP data.

Output directory name; must not be an already,

Minimum distance; default = 5000

Peak padding width (applied on both left and
right); default = 2000000

String of arguments to pass to MACS2; only is
called when peaks are set to be called;
default = "-g 0.01 —--extsize 147 —--nomodel"
Argument to pass to the —-g variable in MACS2
(mm for mouse genome; hs for human genome);
default = "hs"

Peak padding width (applied on both left and
right); default = 500

Merge nearby peaks (after all padding is
complete); default = 500

Keep temporary files?

Skip restriction fragment aware background
correction?

Skip restriction fragment aware padding

Skip QC report generation?

(continues on next page)

15

hichipper Documentation, Release 0.6.0

(continued from previous page)

—--skip-diffloop Skip analyses in diffloop (e.g. Mango loop
calling; .rds generation)
—-make—-ucsc Make additional output files that can support

viewing in UCSC genome browser; requires tabix
and htslib tools.

——keep-samples TEXT Comma separated list of sample names to keep;
ALL (special string) by default
——ignore-samples TEXT Comma separated list of sample names to
ignore; NONE (special string) by default
——read-length TEXT Length of reads from sequencing runs; default = 75
——-version Show the version and exit.
—--help Show this message and exit.
Running
’hichipper —-version

will show the version of this package currently installed.

’hichipper, version 0.6.0

Check the badge up top to see if a newer version is available or try directly through pip:

’pip install hichipper --upgrade

Unless these flags are supplied, the pipeline will attempt to run. Minimally sufficient parameters include the ——out
flag and a . yaml file as shown in the example executions. Below are some explanations of the additional parameters
than can be configured when executing the pipeline.

6.1.1 Restriction-fragment aware padding

6.1.2 Parameter explanations

Most of the parameter options are fairly straight forward. Running hichipper --version or hichipper
——help doesn’t run the tool but supplies the information noted above. Otherwise, the default run mode requires a
.yaml file supplied in addition to the ——out parameter, which specifies the output directory of the run. Users can
decide to customize final output by using boolean flags or supply variable text input. The following cartoon shows a
graphical overview of important parameters to consider when running hichipper.

As noted in orange, defined peaks are automatically padded by some integer width from the ——peak-pad flag. By
default, this pad extends 500 base pairs in either direction. Padding the peaks boosts the number of PETs that can
be mapped to loops. For example, PET II would not be considered in loop since the left end of the read does not
overlap with the called peak (black). However, it does overlap with the padded peak, so it is retained with padding.
When two peaks are close to one another, they may be merged using the ——merge—-gap command. As suggested in
the figure, the padded peaks B and C may be sufficiently close to be merged into a single anchor. Note that this can
lead to some PETs becoming self-ligation (e.g. I-I11). Note, the ——merge—-gap command is equivalent to running
bedtools merge -d on the padded anchors. By default, the merge-gap is 500 base pairs. Specifying this to O can
cause issues, particularly when the width of a PET spans multiple peaks.

The dist or distance between two peaks is noted in black as the center of two peaks. The ——min-dist flag is the
smallest and ——max—dist is the largest integer number that ensures this distance falls between to be considered in a
loop. These defaults are SKb and 2Mb as smaller reads are likely self-ligations whereas larger reads are unlikely to be
biologically real loops.

16 Chapter 6. Configuration

http://bedtools.readthedocs.io/en/latest/content/tools/merge.html

hichipper Documentation, Release 0.6.0

From our inspection of the HiChIP data, we determined that reads for putative loops localize to the edges of restriciton
fragments and that increasing the padding to the edges of fragments can prove beneficial for maximizing the read
density associated with loops. By default, hichipper adds additional padding to the edges of restriction fragments
unless the ——skip-resfrag-pad pad is thrown. To give an example, consider peak C. Under the default options,
the anchor corresponding to this peak would span restriction fragments 7 and 9 (assuming that the merge—gap is
small enough such that B and C are not merged). This is because the additional restriction fragment padding occurs
after the original padding (orange), and hichipper padds to the edges of whatever fragment pads are overlapping the
peak. However, if the user specified ——peak-pad 0, the anchor corresponding to C would only span restriction
motifs 8 and 9 since the peak only sits on that singular fragment. While we have found the default options to be
sensible, the user can adjust these padding parameters to potentially increase precision of anchors calls possibly at the
expense of PET density or vice-versa.

Finally, we note the ——macs2-genome and ——macs2-string which by default has parameters that we felt were
suited appropriately for processing HiChIP data. However, users can modify these when performing peak-calling from
HiChIP data directly.

6.1.3 User parameter recommendations

e If R is not in the system or if the R package dependencies could not be installed, the following flags should be
added:

—-skip-resfrag-pad —--skip-diffloop --skip-gc —-skip-background-correction

¢ In the current version of hichipper, the novel background correction implementation is quite memory intense.
Thus, users running hichipper on a laptop or other low RAM machine should likely skip the adaptive back-
ground correction.

——-skip-background-correction

6.1. hichipper parameters 17

hichipper Documentation, Release 0.6.0

18 Chapter 6. Configuration

CHAPTER /

Data inputs

7.1 Inputs for hichipper

Based on the original design of hichipper users needed to specify the full HiC-Pro output. However, in subsequent
versions, different inputs are accepted; specifically, only a valid fragments file.

While .bam files processed via different software (e.g. HICUP) are not explicitly supported, one can easily convert
.bam file formats into valid fragment pairs files using a combination of samtools and bedtools commands, such as
this shown below:

samtools sort -n HiCUP_chr22.bam | bamToBed —-i - -bedpe |
awk 'OFS="\t" {print $7,$1,int (($2+$3)/2), $9, $4, int (($5+$6)/2), S$10}' >_
—sample_converted.allValidPairs

The resulting sample_converted.allValidPairs file can be used as input to hichipper, using the
—-—input-vi flag.

19

hichipper Documentation, Release 0.6.0

20

Chapter 7. Data inputs

CHAPTER 8

Peaks

8.1 Peaks with hichipper

To call peaks from HiChIP data directly, hichipper aggregates read density from either all samples or each sample
individually. Additionally, users can specify whether all read density is used or if only self-ligation reads are used. To
specify these options, put the appropriate string of the form { COMBINED, EACH}, {ALL, SELF} in the peaks slot
of the . yaml.

For example, to replicate the peak calling performed in Mumbach et al., one would use the following . yam1:

peaks:

— COMBINED, SELF
resfrags:

- hgl9_MboI_resfrag.bed.gz
hicpro_output:

— hicpro

Alternatively, we can call peaks from the HiChIP data for each sample individually using all reads using this specifi-
cation—

peaks:

- EACH, ALL
resfrags:

- hgl9_MboI_resfrag.bed.gz
hicpro_output:

— hicpro

The figure below shows all options for peak specification in hichipper including every option for inferring peaks
which are noted in the table.

Alternatively, users can pre-specify a set of peaks to used. In this case, a “connectome” will be inferred between the
peaks specified in the .bed file. Of note, pre-specified peaks will still be padded either by fixed amounts or to the
edges of the restriction fragment pads (or both) unless the user specifies these flags differently (see below).

21

hichipper Documentation, Release 0.6.0

peaks:

- predeterminedPeaks.bed
resfrags:

- hgl9_MboI_resfrag.bed.gz
hicpro_output:

— hicpro

Note: the input of pre-determined peaks does not have to explicitly be a .bed file. Rather, any file name is ac-
ceptable so long as the first three columns indicate appropriate genomic loci as if it were a . bed file. For example,
.narrowPeak files from macs?2 should be fine.

8.2 Multiple ChIP-Seq peaks as input

As raised in this issue, if you have multiple samples and multiple ChIP-Seq or related high-quality peak definitions to
be used as an input, the way to do this is to create two or more .yaml files, each one specifying its own bed file of
peaks. Then, execute hichipper such that you restrict the analysis to the sample you want per bed file using the
-—keep-samples or ——ignore-samples flags. Thanks to user sb5169 for bringing this up.

8.3 HiChlIP-Specific Bias Correction

A key difference of HiChIP data compared to ChIA-PET, ChIP-Seq, and related immunoprecipitation assays is the a
notable bias where a greater read density accumulates near the motif used in the restriction enzyme digestion. The
image below shows the ratio of the treatment to the background (the statistic used in macs2 to call peaks) as a function
of distance to the nearest restriction fragment locus. Note the plot below—

A more detailed description of this bias and our analysis is contained in this writeup.

22 Chapter 8. Peaks

https://github.com/aryeelab/hichipper/issues/18
https://github.com/aryeelab/hichipper/blob/master/docs/content/media/hichipper_supplement.pdf

CHAPTER 9

Output

9.1 Output

9.1.1 Per-run output files

Each time the user runs hichipper, a « .hichipper. log file containing information pertaining to the flow of the
software execution is placed in the out directory (specified by the ——out flag). Unless otherwise specified, a file
ending in hichipper—gcReport .html provides an interactive quality control report for all samples.

9.1.2 Per-sample output files

Per sample, six (yes, 6, but don’t worry— there’s lots of redundancy) output files are created. They are:
1. *.stat Key summary statistics that show the number of PETs meeting certain criteria
2. x.inter.loop_counts.bedpe Interchromosomal looping between anchor loci.
3. x.intra.loop_counts.bedpe Intrachromosomal looping between all anchor loci

4. ».filt.intra.loop_counts.bedpe Intrachromosomal looping between anchor loci where loops meet
min/max distance requirements.

5. xinteractions.all.mango The same set of loops as 4 but with per-loop FDR measures from the loop
proximity bias correction algorithm originally implemented in Mango and presented in the same format.

6. x.interaction.txt.gz The same set of loops as 4 but in a compressed format for visualizing with WashU
and UCSC Genome Browser tools.

So, outputs 4, 5, and 6 are identical except in presentation. These data are a subset of those presented in 3. Inter-
chromosomal interactions from 2 are often discarded by other preprocessing pipelines, but they may hold value. If
the gcReport is generated, then the . stat file won’t tell you anything new. However, if R is not installed on your
machine, this will be a useful file for assessing the quality of your library.

23

https://github.com/dphansti/mango

hichipper Documentation, Release 0.6.0

24

Chapter 9. Output

cHAaPTER 10

Differential

10.1 Finding differential loops

Have you generated a bunch of HiChIP samples and want to see what’s different between them? Check out the diffloop
vignette for an example analysis comparing loops from ChIA-PET (a similar 3C method to HiChIP) between K562
and MCEF-7. Installation instructions for this package are shown in the dependencies section.

25

https://rpubs.com/caleblareau/diffloop_vignette
https://rpubs.com/caleblareau/diffloop_vignette
http://hichipper.readthedocs.io/en/latest/content/Dependencies.html

hichipper Documentation, Release 0.6.0

26

Chapter 10. Differential

cHAPTER 11

Visualization

11.1 Visualizing loops

11.1.1 Visualization in UCSC / WashU Epigenome Browser

Users can specify the ——make—-ucsc flag to produce output that can be imported into UCSC. See this discussion for
an overview of the format. In order to produce this output, hichipper needs access to the htslib suite of tools in the
computational environment. You can see if you have these dependences available (namely, tabix and bgzip) by
making sure the following works:

tabix —--version

Specifying this flag will create the additional files % .txt .gz and .txt.gz.tbi, which can be used to make a
UCSC track. (Shout out to Gary for helping us with this!)

For WashU Epigenome Browser

We recommend building a WashU track hub to facilitate data i/o and batch visualization. This Rscript may help in
creating the .json file for visualization.

11.1.2 Old method of visualizing loops

We’ve publicly distributed an R/Shiny application for visualizing DNA loops called DNAlandscapeR. While DNA-
landscapeR is not actively maintained, the latest build is stable and should facilitate visualizing . rds files. The
code is all made publicly available here.

To visualize loops in this browser, navigate to the Guide tab to get a sense of how the browser works and ultimately
add your sample(s) to a local user session using the Import tab. Note: the browser currently supports hg19/hg37 and
mm9 genome builds.

27

https://groups.google.com/a/soe.ucsc.edu/forum/#%21topic/genome/kE2pIZUvfnA
http://www.htslib.org/download/
https://molpath.shinyapps.io/DNAlandscapeR
https://github.com/aryeelab/dnalandscaper

hichipper Documentation, Release 0.6.0

28

Chapter 11. Visualization

cHAPTER 12

Author

The primary developer is Caleb Lareau in the Aryee Lab.

29

https://caleblareau.github.io
https://aryee.mgh.harvard.edu/

hichipper Documentation, Release 0.6.0

30

Chapter 12. Author

cHAPTER 13

Citation

If you use hichipper in your research, please cite our tool at the following URL:

http://aryeelab.org/hichipper

31

hichipper Documentation, Release 0.6.0

32

Chapter 13. Citation

cHAPTER 14

Bugs / Errors

Please let us know if you find any errors/inconsistencies in the documentation or code by filing a new Github Issue.

33

https://github.com/aryeelab/hichipper/issues

	About
	Installation
	Install stable version through PyPi
	Install via GitHub

	Dependencies
	Required software for hichipper

	Usage
	Simple usage example
	More typical example

	Version control
	Noteworthy changes in hichipper

	Configuration
	hichipper parameters

	Data inputs
	Inputs for hichipper

	Peaks
	Peaks with hichipper
	Multiple ChIP-Seq peaks as input
	HiChIP-Specific Bias Correction

	Output
	Output

	Differential
	Finding differential loops

	Visualization
	Visualizing loops

	Author
	Citation
	Bugs / Errors

